自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(93)
  • 收藏
  • 关注

原创 抑制电源模块电磁干扰的几种方法

如何抑制电磁干扰,一直都是开关电源模块设计中不可忽视的问题,其不仅关系到电源模块本身的可靠性,也关系到整个应用系统的安全和稳定性。全面抑制开关电源模块的各种噪声干扰才会使开关电源模块得到更广泛的应用。一、电磁干扰的定义电磁干扰(Electro Magnetic Interference,简称EMI)是指任何在传导或电磁场伴随着电压、电流的作用而产生会降低某个装置、设备或系统的性能,或可能对生物或物质产生不良影响之电磁现象。二、电磁干扰的产生骚扰源、敏感设备与耦合途径并称电磁干扰三要素。对于开关电源

2020-06-04 14:18:35 2059

原创 电源模块散热的三种有效方法

电源模块能量从高温区传递到低温区域基础方法有三种:辐射、传输和对流。辐射:不一样温度的两个物块间发热量的电磁感应传递。传输:发热量通过固态介质的传递。对流:发热量通过流体介质(气体)的传递。  在各种各样的具体运用中,全部三种发热量传递的方法常有不一样水平的效果。在绝大多数运用中,对流是最关键的发热量传递方法,若加上此外两种散热方法,实际效果更优。但在一些状况下,这两种方法也可能会产生反效果。因而,设计方案优质的散热系统时,全部三种发热量传递方法都理 用心考虑到 。电源模块1、辐射源 散热当

2020-06-04 14:17:59 1780

原创 浅谈电源模块发展的开发方向

模块电源的薄型化、模块化、标准化并以积木的体例进行组合的电路拓扑结构得到了日益广泛的应用。如何敏捷推出高品质、高可靠性、低成本的模块电源以进步产品竞争力,还需要我们持续不断的在电路、物料、生产工艺等多方面的提升突破。在咱们国家有模块电源研发生产公司大概有上百家甚至几百家,主要是以小型企业和私营企业为主,整体来说竞争力不是很大,行业集中较低,在电源市场能够排名进入前10的开关电源厂家市场的占有率也是不到60%的,而且大多数的都是我们熟知的国际品牌,国内的品牌较少。特别是在中低端的模块电源市场来看,这个行业

2020-06-04 14:17:27 849

原创 电源模块同步降压转换器的击穿现象

负载点电源供应系统 (POL) 或使用点电源供应系统 (PUPS) 等供电系统都广泛采用同步降压转换器。这种同步降压转换器采用高端及低端的 MOSFET 取代传统降压转换器的箝位二极管,以便降低负载电流的损耗。工程师设计降压转换器时经常忽视“击穿”的问题。每当高端及低端 MOSFET 同时全面或局部启动时,便会出现“击穿”的现象,使输入电压可以将电流直接输送到接地。  击穿现象会导致电流在开关的一瞬间出现尖峰,令转换器无法发挥其最高的效率。我们不可采用电流探头测量击穿的情况,因为探头的电感会严重干扰

2020-06-02 15:14:03 834

原创 容易被忽略的电源模块设计问题

虽然采用模块式的设计有以上的多个优点,但模块式设计以至板上直流/直流转换器设计也有本身的问题,很多人对这些问题认识不足,或不给予足够的重视。以下是其中的部分问题:“● 输出噪音的测量;● 磁力系统的设计;● 同步降压转换器的击穿现象;● 印刷电路板的可靠性。这些问题会将在下文中一一加以讨论,同时还会介绍多种可解决这些问题的简单技术。输出噪音的测量技术所有采用开关模式的电源供应器都会输出噪音。开关频率越高,便越需要采用正确的测量技术,以确保所量度的数据准确可靠。量度输出噪音及其他重要数据时,可

2020-06-02 15:13:26 475

原创 采用电源模块的优点

电源模块是可以直接贴装在印刷电路板上的电源供应器 (见图1),其特点是可为专用集成电路(ASIC)、数字信号处理器 (DSP)、微处理器、存储器、现场可编程门阵列 (FPGA) 及其他数字或模拟负载提供供电。一般来说,这类模块称为负载点 (POL) 电源供应系统或使用点电源供应系统 (PUPS)。由于模块式结构的优点甚多,因此高性能电信、网络联系及数据通信等系统都广泛采用各种模块。虽然采用模块有很多优点,但工程师设计电源模块以至大部分板上直流/直流转换器时,往往忽略可靠性及测量方面的问题。本文将深入探讨这些

2020-06-02 15:12:56 623

原创 什么是DCDC电源电涌,来源是哪里

什么是电涌?电涌被称为瞬态过电,是电路中出现的一种短暂的电流、电压波动,在电路中通常持续约百万分之一秒。220 伏电路系统中持续瞬间(百万分之一秒)的 5,000或10,000伏的电压波动,即为电涌或瞬态过电。电涌的来源:简单而言,来自两个方面:外部电涌和内部电涌。来自外部的电涌: 最主要的来源是雷电。当云层中有电荷集蓄,云层下的地表集蓄了极性相反的等量电荷时,便发生了雷电放电,云层和地面间的电荷电位高达若干百万伏,发生雷击时,以若干千安计的电流通过雷击放电,经过所有的设备和大地返回云层,从而完成

2020-06-01 16:53:29 869

原创 DCDC电源模块温度范围与降额使用

一般厂家的模块电源都有几个温度范围产品可供选用:商品级、工业级、军用级等,在选择模块电源时一定要考虑实际需要的工作温度范围,因为温度等级不同材料和制造工艺不同价格就相差很大,选择不当还会影响使用,因此不得不慎重考虑。可以有两种选择方法:一是根据使用功率和封装形式选择,如果在体积(封装形式)一定的条件下实际使用功率已经接近额定功率,那么模块标称的温度范围就必须严格满足实际需要甚至略有裕量。二是根据温度范围来选,如果由于成本考虑选择了较小温度范围的产品,但有时也有温度逼近极限的情况,怎么办呢?降额使用。

2020-06-01 16:51:05 2847

原创 电源模块选择需要考虑的几个方面

DC/DC模块电源以其体积小巧、性能卓异、使用方便的显著特点,在通信、网络、工控、铁路、军事等领域日益得到广泛的应用。很多系统设计人员已经意识到:正确合理地选用DC/DC模块电源,可以省却电源设计、调试方面的麻烦,将主要精力集中在自己专业的领域,这样不仅可以提高整体系统的可靠性和设计水平,而且更重要的是缩短了整个产品的研发周期,为在激烈的市场竞争中领先致胜赢得了宝贵商机。那么,怎样正确合理地选用DC/DC模块电源呢,笔者将从DC/DC模块电源开发设计的角度,谈一谈这方面的问题,以供广大系统设计人员参考。

2020-06-01 16:47:06 781

原创 5G网络的智慧化海量接入物流体系

5G能够被广泛应用于物流中,主要是因为物流与物联网的紧密关系,5G海量接入的特性促进物联网在物流行业的应用,促进物流的智慧化发展。新一代物流具有复杂的架构体系,面向智慧化发展,同时具有短链和共生的特征,灵活兼容性强,因此5G使得新一代物流具有良好的接入特性和智慧特性。新一代物流中,智慧化海量接入的物流体系主要有可视化智慧物流管理体系、智慧化供应链体系、智慧化物流追溯体系。1.可视化智慧物流管理体系可视化智慧物流管理体系是一种对照物联网基本架构设计的服务体系,目的是建设全面感知、全局覆盖以及全程控制的智

2020-05-28 11:50:42 1468

原创 5G网络在物流行业中的优势分析

5G网络能够被广泛推行,主要原因是5G融合了很多关键技术,这些关键技术使得5G在很多方面具有得天独厚的优势,这些优势也使得5G会被广泛应用在新一代智慧物流行业中。(1)高速度数据传输5G需要在网络速度方面进行提升,因为5G将会被广泛用于类似于VR等视觉模拟领域,带宽高才能提升用户的感受和体验。其实和每一代通信技术一样,确切说5G的速度极限目前还未可知,因此通信技术在不断发展,而且峰值速度和实际速度并不一定匹配。但是, 在目前制定的标准中,5G基站检测的带宽峰值要求高于20Gb/s,这也保证了每个用户体

2020-05-28 11:50:12 1205

原创 基于5G的AI传感器在环境监测中的应用研究

1、课题背景工业社会的飞速发展给人类带来了丰富的物质生活,与此同时,由于人类对其负面影响准备不足,随之而来的污染也在逐步侵食和破坏人类赖以生存的环境。环境的监测与污染的治理由此成为了一项重要且长期的工程。随着通信技术的飞速发展与人工智能浪潮的高速崛起,5G技术、人工智能也将改变现有传感器及传感器网络,使其变得更加快速高效智能。因此本文结合5G关键技术与AI技术的特点,提出了基于5G的AI传感器在环境监测中的应用。2、关键技术应用l 课题对无线传感器网络技术进行研究归纳,分析了无线传感器网的特点应用方

2020-05-28 11:49:16 1840

原创 ZigBee技术有哪些应用领域?

ZigBee技术的目标就是针对,工业,家庭自动化,遥测遥控,例如灯光自动化控制,传感器的无线数据采集和监控,油田,电力,矿山和物流管理等应用领域。ZigBee实现了哪些工业现场对无线数据传输的要求?要求低功耗,低数据量(250KPS),低成本,使用免费的ISM频段(2.4G),高的抗干扰性能的直序扩频通信方式(DSSS),高保密性(64位出厂编号和支持AES-128加密),高集成度和高的可靠性;节点模块之间具有自动动态组网的功能,采用了包括网状网在内的拓扑结构,使用了碰撞避免机制,信息在整个ZigBe

2020-05-27 14:17:06 8559

原创 ZigBee使用技术问题汇总

ZigBee使用那种协议?IEEE802.15.4协议,这是一种低传送速率的无限PAN的协议。在标准化方面,IEEE802.15.4工作组主要负责制定物理层和MAC层的协议,其余协议主要参照和采用现有的标准,高层应用、测试和市场推广等方面的工作将由ZigBee联盟负责。为什么ZigBee无线通信使用2,4G频段是免费频段?在我国和世界上大多数其他国家,一般使用无线电设备都是要付频率使用费的,包括手机通信,只不过移动运营商已经向国家支付了这笔费用,并通过号码占用费等方式向用户收取了这笔费用。在使用其它

2020-05-27 14:16:36 1218

原创 ZigBee技术的历史起源

ZigBee起源什么技术?在蓝牙技术的使用过程中,人们发现蓝牙技术尽管有许多优点,但仍存在许多缺陷。对工业,家庭自动化控制和工业遥测遥控领域而言,蓝牙技术显得太复杂,功耗大,距离近,组网规模太小等,……而工业自动化,对无线数据通信的需求越来越强烈,而且,对于工业现场,这种无线数据传输必需是高可靠的,并能抵抗工业现场的各种电磁干扰。因此,经过人们长期努力,ZigBee协议在2003年中正式问世了。另外,ZigBee使用了在它之前所研究过的面向家庭网络的通信协议Home RF Lite。什么是ZigBee

2020-05-27 14:16:03 2416

原创 NB-lot与LoRa并非你死我活关系

2019年11月28日,工信部发布第52号公告。公告的主要内容,涉及微功率设备的范畴定义、无线频率的使用限制等要求,还有一些管理规定和举措,一共10条内容。而其中第7条,非常关键。原文内容有点长,简单来说,就是国家明确规定,433MHz不属于中国的ISM频段。这条消息被网络热议,有观点认为该文件彻底封杀了LoRa,还有观点认为是政府力图扶持NB-lot。小编认为,NB-lot与LoRa并非你死我活关系。两者会形成楚河汉界,互不侵犯。    LoRa并没被判死刑  ISM频段,就是(工业、科学及医疗)频

2020-05-26 14:28:04 601

原创 关于NB-loT,企业需要知道什么

随着物联网的持续高速发展,企业需要明晰物联网技术与当前业务及未来发展战略的契合之处。    《沃达丰物联网市场晴雨表2019》显示:已经有34%的企业和组织应用了物联网技术,其中又有95%表示他们从中获得了受益,具体受益包括:降低运营成本(53%),增加现有业务收入(42%)和改进数据收集(42%)。  全球移动物联商业网络正在不断膨胀,所以上述调查数据也就不足为奇。在所有移动物联网解决方案中,有一项独特的技术脱颖而出——NB-loT,这可能是企业正在苦苦找寻的技术。  认识NB-loT  NB-

2020-05-26 14:27:27 871

原创 NB-lot和LoRa真正的差别在哪里?

就像要把大象装冰箱一样,物联网,万物互联也是要分步骤的。    一、感知层(信息获取层),即利用各种传感器等设备随时随地获取物体的信息;  二、网络层(信息传输层),通过各种电信网络与互联网的融合,将物体的信息实时准确地传递出去;  三、应用层(信息处理层),把感知层得到的信息进行处理,实现智能化识别、定位、跟踪、监控和管理等实际应用。  就像智慧消防系统,通过烟感器、温湿度传感器把房间里的情况,通过网络上传到云端,再传达给综合预警平台,这样房间的情况就可以通过平台进行监控,一旦发现温湿度超出正常

2020-05-26 14:26:50 1651

原创 LoRa有应用场景吗?

不同的技术特征会带来不同的应用场景,LoRa最大的价值点在于,易部署与自主性,总体来说,LoRa更适合企业用户对自主性、快速性要求高,对连续覆盖、深度覆盖要求高的场景,如园区、工厂、厂矿、农场、物流集散地、综合体、人居社区等环境。“能够生存下来的物种,并不是那些最强壮的,也不是那些最聪明的,而是那些对变化作出快速反应的。”达尔文的这句话也许最能够说明LoRa的价值。LoRa目前提供了近似广域网络的连接能力,且网关市场上已有室外、室内甚至桌上型路由大小的设备,人人都可以搭建自有的LoRa网络,如同使用W

2020-05-25 14:29:13 744

原创 LoRa已经成为了主流物联网络制式之一

近日,物联网产业又爆出猛料。LoRa 联盟(LoRa Alliance)和腾讯日前共同宣布,腾讯已在最高层面加入LoRa联盟,这将进一步加快LoRaWAN技术的采用。这是继阿里巴巴、中国联通与Semtech合作以及Google加入LoRa联盟之后LoRa领域迎来的又一重要事件。继阿里巴巴之后,腾讯宣布加入LoRa联盟,无疑对于LoRa技术在中国加速发展提供了巨大的驱动力。伴随着物联网产业的快速发展,阿里巴巴、Google、腾讯等巨头的站台,国内外大量LoRa应用的商用,让LoRa已经从事实上已经成为了主

2020-05-25 14:28:39 967

原创 LoRa环境传感器特性介绍

一、什么是LoRa环境传感器LoRa环境传感器,指的是搭载有环境传感器的LoRa节点,比如温度传感器、湿度传感器、气压、室内空气质量传感器等等,但是,与传统的环境传感器不同的是,LoRa环境传感器将采集到的数据通过LoraWan/LinkWan协议发送到LoRa网关,再最终传送到服务器上。图1 LoRa环境传感器的典型组网应用由于LoRa环境传感器使用LoRa技术来发送数据,因此,这也决定了其组网比传统的传感器要来的简单。比如,假设应用场景是智慧农场,当该农场覆盖范围较大时,由于LoRa技术在城区的

2020-05-25 14:27:58 619 1

原创 微电子封装技术未来发展面临的问题与挑战

毫无疑问,3D封装和SIP系统封装是当前以至于以后很长一段时间内微电子封装技术的发展方向。  目前3D封装技术的发展面临的难题:一是制造过程中实时工艺过程的实时检测问题。因为这一问题如果解决不了,那么就会出现高损耗,只有控制了每一道生产工艺,才能有效地保证产品的质量,从而达到有效地降低废品率。二是超薄硅圆片技术。面对更薄的硅圆片,在夹持和处理过程中如何避免它的变形及脆裂,以及后续评价检测内的各种处理技术,都有待进一步研究。三是高密度互连的散热问题。目前,基于微流体通道的液体冷却被证明是显著降低3DICs

2020-05-21 14:44:35 1473

原创 SIP系统封装技术浅析

系统级封装(systeminpackage,SIP)是指将不同种类的元件,通过不同种技术,混载于同一封装体内,由此构成系统集成封装形式。我们经常混淆2个概念系统封装SIP和系统级芯片SOC。迄今为止,在IC芯片领域,SOC系统级芯片是最高级的芯片;在IC封装领域,SIP系统级封装是最高级的封装。SIP涵盖SOC,SOC简化SIPSOC,与SIP是极为相似的,两者均希望将一个包含逻辑组件、内存组件,甚至包含被动组件的系统,整合在一个单位中。然而就发展的方向来说,两者却是大大的不同:SOC是站在设计的角度出发,

2020-05-21 14:43:06 3376

原创 3D封装技术定义和解析

SIP有多种定义和解释,其中一说是多芯片堆叠的3D封装内系统集成,在芯片的正方向堆叠2片以上互连的裸芯片的封装。SIP是强调封装内包含了某种系统的功能封装,3D封装仅强调在芯片方向上的多芯片堆叠,如今3D封装已从芯片堆叠发展到封装堆叠,扩大了3D封装的内涵。    3D封装的形式有很多种,主要可分为填埋型、有源基板型和叠层型等3类。填埋型三维立体封装出现上世纪80年代,它是将元器件填埋在基板多层布线内或填埋、制作在基板内部,它不但能灵活方便地制作成填埋型,而且还可以作为IC芯片后布线互连技术,使填埋的压

2020-05-21 14:42:24 2805

原创 微电子封装技术的发展趋势

微电子封装技术的发展趋势  21世纪微电子技术的高速发展,随之带动的是一系列产业的发展。信息、能源、通讯各类新兴产业的发展离不开微电子技术。而微电子封装技术是微电子技术中最关键和核心的技术。微电子封装体(Package)和芯片(Chip或die)通过封装工艺(Packaging)组合成一个微电子器件(Device),通常封装为芯片(或管芯)提供电通路、散热通路、机械支撑、环境防护等,所以微电子封装是微电器件的2个基本组成部分之一,器件的许多可靠性性能都是由封装的性能决定的。致力于发展微电子封装技术的人们把

2020-05-21 14:41:42 1840

原创 AIN陶瓷封装材料

SIP芯片堆叠后发热量将增加,但散热面积相对并未增加,因而发热密度大幅提高,而且由于热源的相互连接,热耦合增强,从而造成更为严重的热问题。同时,内埋置基板中的无源器件也有一定的发热问题。因此,SIP在封装体积缩小、组装密度增加的同时必然带来散热的问题,选择散热效果更好即热导率更高的陶瓷材料是实现SIP的关键。AIN陶瓷具有较高的热导率,其膨胀系数与Si材料更匹配,且介电常数低,适用于高功率、多引线和大尺寸芯片,是替代AI2O3、BeO基板材料的最好材料。近年来AIN 陶瓷的研究受到世界各国的青睐,其研究

2020-05-20 14:49:57 886

原创 SIP中陶瓷基板材料的未来发展趋势

各种电子系统的封装密度不断提高、功能日趋多样化,目前现有单一材料的性能已不能满足需求。未来电子封装材料将会朝着多相复合化的方向持续发展。(1)具有系列化性能的材料体系的研究SIP会在一个封装单元内涉及到多种芯片、多种互连、多种封装、多种组装和多种测试,因此必然要求其材料具有多种性能。比如,材料的介电常数应实现9~95的可调性系列化;热膨胀系数系列化可以使得基板与多种芯片和封装结构匹配良好,增加整个模块的可靠性;收缩率系列化可调性能够满足不同陶瓷材料的共烧等等。因此,系列化的陶瓷材料能够很好地实现SIP

2020-05-20 14:49:19 542

原创 SIP用陶瓷基板封装材料

只有制备出各项性能优异的封装材料,才能实现SIP多种封装结构、组装方式等。具体来说,SIP要求基板材料具有优良的机械性能、介电性能、导热性能和电学性能,同时还要易成型,易加工,成本低,主要包括以下几个方面:(1)低的介电常数ε。信号传输速度与基板材料的介电常数和信号传输距离有关,介电常数越低,信号传输越快。(2)低介电损耗tgδ。在基板材料的电导和松弛极化过程中,带电质点将电磁场能部分地转化为热能,将能量消耗在使封装材料发热的效应上,介电损耗低能够大大降低基板的发热效应。(3)高热导率。芯片电路密度

2020-05-20 14:48:45 1198

原创 系统级封装用陶瓷基板材料研究进展和发展趋势

系统级封装技术能够将不同类型的元件通过不同的技术混载于同一封装之内,是实现集成微系统封装的重要技术,在航空航天、生命科学等领域中有广阔的应用前景。陶瓷基板材料是系统级封装技术的基础材料之一。本文介绍了系统级封装技术的概念及其特点,分析几种系统级封装用陶瓷基板材料的优缺点,同时指出了陶瓷基板材料的未来发展趋势。随着以电子计算机为核心、集成电路产业为基础的现代信息产业的发展,以及便携式通讯系统对电子产品的迫切需求,电子产业得到了迅猛发展,同时也带动了与之密切相关的电子封装的发展。电子封装技术直接影响着电子器

2020-05-20 14:47:37 863

原创 直接粘接三维陶瓷基板 (DAC)

上述 HTCC、LTCC 及 MSC 基板线路层都采用丝网印刷制备,精度较低,难以满足高精度、高集成度封装要求,因此业界提出在高精度 DPC 陶瓷基板上成型腔体制备三维陶瓷基板。由于 DPC 基板金属线路层在高温 (超过 300°C) 下会出现氧化、起泡甚至脱层等现象,因此基于 DPC 技术的三维陶瓷基板制备必须在低温下进行。首先加工金属环和 DPC 陶瓷基板,然后采用有机粘胶将金属环与 DPC 基板对准后粘接、加热固化。由于胶液流动性好,因此涂胶工艺简单,成本低,易于实现批量生产,且所有制备工艺均在低

2020-05-19 15:04:39 366

原创 多层烧结三维陶瓷基板 (MSC)

与 HTCC/LTCC 基板一次成型制备三维陶瓷基板不同,有些公司采用多次烧结法制备了 MSC 基板。其工艺流程如下,首先制备厚膜印刷陶瓷基板(TPC),随后通过多次丝网印刷将陶瓷浆料印刷于平面 TPC 基板上,形成腔体结构,再经高温烧结而成,得到的 MSC 基板样品。由于陶瓷浆料烧结温度一般在 800°C 左右,因此要求下部的 TPC 基板线路层必须能耐受如此高温,防止在烧结过程中出现脱层或氧化等缺陷。由上文可知,TPC 基板线路层由金属浆料高温烧结 (一般温度为 850°C ~ 900°C) 制备,

2020-05-19 15:04:02 796

原创 三维陶瓷基板制备技术-高低温共烧陶瓷基板

许多微电子器件 (如加速度计、陀螺仪、深紫外 LED 等) 芯片对空气、湿气、灰尘等非常敏感。如 LED 芯片理论上可工作 10 万小时以上,但水汽侵蚀会大大缩短其寿命 (甚至降低至几千小时)。为了提高这些微电子器件性能 (特别是可靠性),必须将其芯片封装在真空或保护气体中,实现气密封装 (芯片置于密闭腔体中,与外界氧气、湿气、灰尘等隔绝)。因此,必须首先制备含腔体 (围坝)结构的三维基板,满足封装应用需求。目前,常见的三维陶瓷基板主要有:高/低温共烧陶瓷基板(High/Low Temperature

2020-05-19 15:03:31 901

原创 倾角传感器在自动监测中的应用

导读:倾角传感器,是运用惯性原理,测量相对于水平面的倾角变化量的一种加速度传感器,被广泛用于各种测量角度的应用中。例如高空平台安全保护、高精度激光仪器水平、工程机械设备调平、定向卫星通讯天线的俯仰角测量等等。今天,传感器专家网小编便来为大家介绍一下倾角传感器在的国产C919大型客机制造过程中的应用,一起来看看吧。2017年5月,中国商飞研制的C919大型客机在上海浦东国际机场成功首飞,成为我国建设创新型国家、提升高端装备制造能力的标志性工程。随着该客机试飞成功,如何进一步提高大飞机装配效率与精度,成为工

2020-05-19 15:02:54 989

原创 电子罗盘详解之原理和特点

电子罗盘的原理三维电子罗盘由三维磁阻传感器、双轴倾角传感器和MCU构成。三维磁阻传感器用来测量地球磁场,倾角传感器是在磁力仪非水平状态时进行补偿;MCU处理磁力仪和倾角传感器的信号以及数据输出和软铁、硬铁补偿。三维磁阻传感器采用三个互相垂直的磁阻传感器,每个轴向上的传感器检测在该方向上的地磁场强度。向前的方向称为x方向的传感器检测地磁场在x方向的矢量值;向左或Y方向的传感器检测地磁场在Y方向的矢量值;向下或Z方向的传感器检测地磁场在Z方向的矢量值。每个方向的传感器的灵敏度都已根据在该方向上地磁场的分

2020-05-13 14:57:20 2771

原创 电子罗盘详解之地磁场和航向角

地球本身具有磁性,所以地球和近地空间之间存在着磁场,叫做地磁场。地磁场的强度为0. 3 至0. 6 高斯,其大小和方向随地点(甚至随时间) 而异。地球本身具有磁性,所以地球和近地空间之间存在着磁场,叫做地磁场。地磁场的强度为0. 3 至0. 6 高斯,其大小和方向随地点(甚至随时间) 而异。如图所示,地球的磁场象一个条形磁体一样由磁南极指向磁北极。在磁极点处磁场和当地的水平面垂直,在赤道磁场和当地的水平面平行,所以在北半球磁场方向倾斜指向地面。用来衡量磁感应强度大小的单位是Tesla或者Gauss(1T

2020-05-13 14:56:37 4556

原创 电子罗盘详解之与GPS导航区别

目前, 导航系统在汽车、航海、航空等领域已经得到广泛的应用。电子罗盘是导航系统不可缺少的重要组成部分。GPS导航定位的缺陷1、虽然GPS在导航、定位、测速、定向方面有着广泛的应用,但由于其信号常被地形、地物遮挡,导致精度大大降低,其信号可用性仅为60% ,甚至不能使用。产生不精确定位的原因包括:①多路径效应:建筑物对GPS信号的反射;②阴影:城市中高楼与高楼之间形成的“峡谷”内、浓密的植被下,信号接收效果较差;③在隧道、地下停车厂造成的信号失锁;④在接收信号差的地区延长了初始化时间;⑤一些

2020-05-13 14:56:00 1659

原创 电解质倾角计与MEMS倾角计

近年来,微电子机械系统(MEMS)的应用越来越普遍与电解质型倾角传感器相比,MEMS型产品通常尺寸更小,成本更低,因而成为生产制造中广受欢迎的元件。既然MEMS具备如此吸引人的特性,为什么人们仍在广泛使用电解质型倾角传感器?性能倾角传感器的性能取决于多项属性:漂移、可重复性和环境耐久性。漂移意味着久而久之读数不准,需要经常性的校准。大部分MEMS产品要求稳定的电压供应,设备的高重复性要求很好地控制在微伏范围。要保证长时间和不同温度下的电压稳定性,就需要采用昂贵而高精度的电源。与MEMS产品相比,设计

2020-05-12 15:34:49 442

原创 使用倾角传感器的注意事项

在安装传感器时,不正确安装会导致测量角度误差大。要保证‘两面’和‘两线’的正确安装,安装时请注意以下两点:1.‘两面’指传感器安装面与被测物体的安装面完全紧靠(被测物体的安装面要尽可能水平),不能有夹角产生2.‘两线’指传感器轴线与被测面轴线平行,两轴线不能有夹角产生3.防爆的必要性:防爆形式分为隔爆型和本安型,长野产品多数为隔爆型。4.是否需要带指示:根据客户指示。接点数量:一接点(一个输出)或两接点(两个输出)。6.设定值和压力范围的确定:推荐设定范围在压力范围的30%—65%之间,可

2020-05-12 15:34:12 635

原创 倾角传感器的相关知识

角度计量是几何量计量的重要组成部分。角度量的范围广,平面角按平面所在的空间位置可分为:在水平面内的水平角(或称方位角),在垂直面内的垂直角(或倾斜角),空间角是水平角和垂直角的合成;按量程可分为圆周分度角和小角度;按标称值可分为定角和任意角;按组成单元可分为线角度和面角度;按形成方式可分为固定角和动态角,固定角是指加工或装配成的零组件角度,仪器转动后恢复至静态时的角位置等;动态角是指物体或系统在运动过程中的角度,如卫星轨道对地球赤道面的夹角,精密设备主轴转动时的轴线角漂移,测角设备在一定角速度和角加速度运动

2020-05-12 15:32:50 996

原创 倾角传感器组成和应用

倾角传感器又叫做叫角度传感器,不难看出是通过传感器的技术来测量角度,在选择传感器的时候需要知道,传感器测量的范围是多少,测量的精度要求是什么样子的,如何安装起来更加简单便捷,甚至以后是如何来保养传感器?   其实传感器对于一个开发者来说是一个很简单的仪器,同样对于一个使用者来说也是很简单的,类似选择好倾角传感器,首先必须知道你用的是传感器ic还是传感器模块,不过现在的实际中采购的直接就是传感器...

2020-05-08 15:09:42 1016

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除