0 deephub

尚未进行身份认证

我要认证

暂无相关简介

等级
TA的排名 5k+

在机器学习回归问题中,你应该使用哪种评估指标?R²,RMSE, MAE

如果你像我一样,你可能会在你的回归问题中使用R平方(R平方)、均方根误差(RMSE)和均方根误差(MAE)评估指标,而不用考虑太多。????尽管它们都是通用的度量标准,但在什么时候使用哪一个并不明显。R方(R²)R²代表模型所解释的方差所占的比例。R²是一个相对度量,所以您可以使用它来与在相同数据上训练的其他模型进行比较。你可以用它来大致了解一个模型的性能。我们看看R轴是怎么计算的。向前!➡️这是一种表示R的方法。1 - (SSE/SST)SSE是误差的平方和;实际值与预测值之差的平方和。

2020-08-10 09:33:03

在TensorFlow中使用模型剪枝将机器学习模型变得更小

学习如何通过剪枝来使你的模型变得更小剪枝是一种模型优化技术,这种技术可以消除权重张量中不必要的值。这将会得到更小的模型,并且模型精度非常接近标准模型。在本文中,我们将通过一个例子来观察剪枝技术对最终模型大小和预测误差的影响。导入常见问题我们的第一步导入一些工具、包:Os和Zipfile可以帮助我们评估模型的大小。tensorflow_model_optimization用来修剪模型。load_model用于加载保存的模型。当然还有tensorflow和keras。最后

2020-08-09 10:46:57

简介机器学习中的特征工程

​ 要解决一个机器学习问题,我们不能仅仅通过将算法应用到提供的数据上。比如.fit() 。我们首先需要构建一个数据集。将原始数据转换为数据集的任务称为特征工程。​ 例如,预测客户是否坚持订阅特定产品。这将有助于进一步提高产品或用户体验,还有助于业务增长。​ 原始数据将包含每个客户的详细信息,如位置、年龄、兴趣、在产品上花费的平均时间、客户续订订阅的次数。这些细节是数据集的特性。创建数据集的任务是从原始数据中了解有用的特性,并从对结果有影响的现有特性中创建新特性,或者操作这些特性,使它们可以用

2020-08-08 09:16:52

20个能够有效提高 Pandas数据分析效率的常用函数,附带解释和例子

Pandas是一个受众广泛的python数据分析库。它提供了许多函数和方法来加快数据分析过程。pandas之所以如此普遍,是因为它的功能强大、灵活简单。本文将介绍20个常用的 Pandas 函数以及具体的示例代码,助力你的数据分析变得更加高效。首先,我们导入 numpy和 pandas包。import numpy as npimport pandas as pd1. Query我们有时需要根据条件筛选数据,一个简单方法是query函数。为了更直观理解这个函数,我们首先创建一个示例 data.

2020-08-07 08:32:46

神经网络如何学习的?

像下山一样,找到损失函数的最低点。毫无疑问,神经网络是目前使用的最流行的机器学习技术。所以我认为了解神经网络如何学习是一件非常有意义的事。为了能够理解神经网络是如何进行学习的,让我们先看看下面的图片:如果我们把每一层的输入和输出值表示为向量,把权重表示为矩阵,把误差表示为向量,那么我们就得到了上述的一个神经网络的视图,它只是一系列向量函数的应用。也就是说,函数将向量作为输入,对它们进行一些转换,然后把变换后的向量输出。在上图中,每条线代表一个函数,它可以是一个矩阵乘法加上一个误差向量,也可以是一个

2020-08-06 08:35:59

常见机器学习算法背后的数学

不同的机器学习算法是如何从数据中学习并预测未见数据的呢?机器学习算法是这样设计的,它们从经验中学习,当它们获取越来越多的数据时,性能就会提高。每种算法都有自己学习和预测数据的方法。在本文中,我们将介绍一些机器学习算法的功能,以及在这些算法中实现的有助于学习过程的一些数学方程。机器学习算法的类型机器学习算法大致可以分为以下四类:监督学习:预测的目标或输出变量是已知的。这些算法生成一个函数,该函数将输入映射到输出变量。回归和分类算法属于这一类。在回归中,输出变量是连续的,而在分类中,输出变量包含两个或.

2020-08-05 08:46:20

使用Pytorch和Matplotlib可视化卷积神经网络的特征

在处理图像和图像数据时,CNN是最常用的架构。卷积神经网络已经被证明在深度学习和计算机视觉领域提供了许多最先进的解决方案。没有CNN,图像识别、目标检测、自动驾驶汽车就不可能实现。但当归结到CNN如何看待和识别他们所做的图像时,事情就变得更加棘手了。CNN如何判断一张图片是猫还是狗?在图像分类问题上,是什么让CNN比其他模型更强大?他们在图像中看到了什么?这是我第一次了解CNN时的一些问题。问题会随着你的深入而增加。那时候我听说过过滤器和特性映射,但不知道它们是什么,它们的作用是什么。后..

2020-08-04 09:11:28

神经网络架构搜索(NAS)基础

网络架构搜索(NAS)已成为机器学习领域的热门课题。商业服务(如谷歌的AutoML)和开源库(如Auto-Keras[1])使NAS可用于更广泛的机器学习环境。在这篇博客文章中,我们主要探讨NAS的思想和方法,希望可以帮助读者更好地理解该领域并发现实时应用程序的可能性。什么是网络架构搜索(NAS)?现代的深度神经网络有时会包含多种类型的层,而且这些层不止一个[2]。Skip connections[2]和子模块方法[3]也被用来促进模型的收敛,它们对可能形成的模型体系结构的空间没有限制。目前大多数的深度

2020-08-03 08:47:28

一个快速构造GAN的教程:如何用pytorch构造DCGAN

​ 在本教程中,我们将在PyTorch中构建一个简单的DCGAN,并在手写数据集上对它进行训练。我们将讨论PyTorch DataLoader,以及如何使用它将图像数据提供给PyTorch神经网络进行训练。PyTorch是本教程的重点,所以我假设您熟悉GAN的工作方式。要求python版本为3.7或更高。PyTorch 1.5不知道如何安装? 可以参考github项目https://github.com/zergtant/pytorch-handbookMatplotlib 3.1或更高版本.

2020-08-02 10:39:58

这3个Scikit-learn的特征选择技术,能够有效的提高你的数据预处理能力

Scikit-learn是一个广泛使用的python机器学习库。它以现成的机器学习算法而闻名,在scikit-learn中也为数据预处理提供了很多有用的工具。数据预处理是机器学习的重要环节。我们不能仅仅将原始数据转储到模型中。我们需要清理数据,并应用一些预处理技术,以能够创建一个健壮和准确的机器学习模型。特征选择仅仅意味着使用更有价值的特征。这里的价值是信息。我们希望使用对目标变量有更多信息的特性。在一个有监督的学习任务中,我们通常有许多特征(自变量),其中一些可能对目标(因变量)只有很少或没有价值的见

2020-08-01 13:49:59

用神经网络解决拼图游戏

在一个排列不变性的数据上神经网络是困难的。拼图游戏就是这种类型的数据,那么神经网络能解决一个2x2的拼图游戏吗?什么是置换不变性(Permutation Invariance)?如果一个函数的输出不通过改变其输入的顺序而改变,那么这个函数就是一个排列不变量。下面是一个例子。1) f(x,y,z) = ax + by +cz2) f(x,y,z) = xyz如果我们改变输入的顺序,第一个函数的输出会改变,但是第二个函数的输出不会改变。第二个函数是置换不变量。神经网络的权值映射到特定的输入单元。

2020-07-31 08:44:49

为什么我们的神经网络需要激活函数

如果你正在读这篇文章,那么很可能你已经知道什么是神经网络,什么是激活函数,但是,一些关于机器学习的入门课程并不能很清楚地说明,为什么我们需要这些激活函数。我们需要它们吗?没有它们,神经网络还能工作吗?首先让我们回顾一下关于神经网络的一些事情。它们通常被可视化地表示为一个类似图表的结构,如下图所示:如上图所示,神经网络有3层:输入层、隐藏层、输出层,共3、4、2个神经元。输入层的节点数量与数据集的特性数量相同。对于隐藏层,您可以自由选择需要多少节点,并且可以使用多个隐藏层。网络中的每个神经元,除了

2020-07-30 08:58:29

使用神经网络为图像生成标题

我们都知道,神经网络可以在执行某些任务时复制人脑的功能。神经网络在计算机视觉和自然语言生成方面的应用已经非常引人注目。本文将介绍神经网络的一个这样的应用,并让读者了解如何使用CNNs和RNNs (LSTM)的混合网络实际为图像生成标题(描述)。我们在这个任务中使用的数据集是流行的flickr 8k图像数据集,它是这个任务的基准数据,可以通过下面的链接访问。Kaggle — https://www.kaggle.com/adityajn105/flickr8k注意:我们将把数据集分割为7k用于训练,1k

2020-07-29 09:01:30

如何利用机器学习和Gatsby.js创建假新闻网站

我们对错误消息并不陌生。假新闻和假标题并不是现代发明。甚至早在20世纪初就有了黄色新闻,它只是使用各种道德上有问题的策略来吸引人们购买报纸和其他媒体形式的注意力。在没有报纸订阅的情况下,公司必须为每一笔销售而战,而当你最好的营销方式是招牌和报童时,就需要通过新闻标题迅速形成强烈的印象。随之而来的是大量过度夸张的标题和缺乏研究的文章。听起来是不是很熟悉?我们生活在一个真理不再是非黑即白的世界。在我们生活的世界里,媒体明白,影响人们的最佳方式不是通过逻辑,而是通过情感。他们明白我们人类不是通过有意识的思考和.

2020-07-28 09:06:41

检测假新闻:比较不同的分类方法的准确率

这些推特是真的还是假的?他们肯定是假的。在7月15日时,Twitter出现了一个大问题,大账户被黑客入侵,要求比特币捐款,并承诺将捐款金额翻倍。所以即使这些推特是真实的,它们也包含了虚假信息。这不是第一次,也可能不是最后一次。但是,我们能阻止它吗?我们能阻止这种情况发生吗?问题问题不仅仅是黑客进入账户并发送虚假信息。这里更大的问题是我们所说的“假新闻”。假新闻是那些虚假的新闻故事:故事本身是捏造的,没有可证实的事实、来源或引用。当有人(或机器人之类的东西)冒充某人或可靠来源虚假传播信息时,也.

2020-07-27 09:06:21

在Python中使用Torchmoji将文本转换为表情符号

很难找到关于如何使用Python使用DeepMoji的教程。我已经尝试了几次,后来又出现了几次错误,于是决定使用替代版本:torchMoji。TorchMoji是DeepMoji的pyTorch实现,可以在这里找到:https://github.com/huggingface/torchMoji事实上,我还没有找到一个关于如何将文本转换为表情符号的教程。如果你也没找到,那么本文就是一个了。安装这些代码并不完全是我的写的,源代码可以在这个链接上找到。!pip3 install torch==1.0

2020-07-26 10:09:19

使用Keras构建具有自定义结构和层次图卷积神经网络(GCNN)

在生活中的某个时刻我们会发现,在Tensorflow Keras中预先定义的层已经不够了!我们想要更多的层!我们想要建立一个具有创造性结构的自定义神经网络!幸运的是,通过定义自定义层和模型,我们可以在Keras中轻松地执行此任务。在这个循序渐进的教程中,我们将构建一个包含并行层的神经网络,其中包括一个图卷积层。那么什么是图上的卷积呢?图卷积神经网络在传统的神经网络层中,我们在层输入矩阵X和可训练权值矩阵w之间进行矩阵乘法,然后应用激活函数f。因此,下一层的输入(当前层的输出)可以表示为f(XW)。在图卷

2020-07-25 09:19:36

快速介绍Python数据分析库pandas的基础知识和代码示例

“软件工程师阅读教科书作为参考时不会记住所有的东西,但是要知道如何快速查找重要的知识点。”为了能够快速查找和使用功能,使我们在进行机器学习模型时能够达到一定流程化。我创建了这个pandas函数的备忘单。这不是一个全面的列表,但包含了我在构建机器学习模型中最常用的函数。让我们开始吧!本附注的结构:导入数据导出数据创建测试对象查看/检查数据选择查询数据清理筛选、排序和分组统计数据首先,我们需要导入pandas开始:import pandas as pd导入数据使用函数pd.re

2020-07-24 09:31:14

卷积神经网络中的参数共享/权重复制

参数共享或权重复制是深度学习中经常被忽略的领域。但是了解这个简单的概念有助于更广泛地理解卷积神经网络的内部。卷积神经网络(cnn)能够使那些通过网络馈送的图像在进行仿射变换时具有不变性。 这个特点提供了识别偏移图案、识别倾斜或轻微扭曲的图像的能力。仿射不变性的这些特征是由于CNN架构的三个主要属性而引入的。局部感受领域权值共享(参数共享)空间子采样在本文中,我们将探索权值共享,并了解它们的用途以及它们在CNN架构中的优势。本文针对从事机器学习或更具体地说是深度学习的各个层次的

2020-07-23 08:48:55

为什么说神经网络可以逼近任意函数?

本文主要介绍神经网络万能逼近理论,并且通过PyTorch展示了两个案例来说明神经网络的函数逼近功能。大多数人理解“函数”为高等代数中形如“f(x)=2x”的表达式,但是实际上,函数只是输入到输出的映射关系,其形式是多样的。拿个人衣服尺寸预测来说,我们用机器学习来实现这个功能,就是将个人身高、体重、年龄作为输入,将衣服尺寸作为输出,实现输入-输出映射。具体来说,需要以下几个步骤:收集关键数据(大量人口的身高/体重/年龄,已经对应的实际服装尺寸)。训练模型来实现输入-输出的映射逼近。对未知数据进

2020-07-22 08:39:18

查看更多

勋章 我的勋章
  • 签到新秀
    签到新秀
    累计签到获取,不积跬步,无以至千里,继续坚持!
  • 新人勋章
    新人勋章
    用户发布第一条blink获赞超过3个即可获得
  • 持之以恒
    持之以恒
    授予每个自然月内发布4篇或4篇以上原创或翻译IT博文的用户。不积跬步无以至千里,不积小流无以成江海,程序人生的精彩需要坚持不懈地积累!
  • 勤写标兵Lv4
    勤写标兵Lv4
    授予每个自然周发布9篇以上(包括9篇)原创IT博文的用户。本勋章将于次周周三上午根据用户上周的博文发布情况由系统自动颁发。
  • 原力探索
    原力探索
    参与《原力计划【第二季】——打卡挑战》的文章入选【每日精选】的博主将会获得此勋章。
  • 学习力
    学习力
    《原力计划【第二季】》第一期主题勋章 ,第一期活动已经结束啦,小伙伴们可以去参加第二期打卡挑战活动获取更多勋章哦。
  • 原力新人
    原力新人
    在《原力计划【第二季】》打卡挑战活动中,成功参与本活动并发布一篇原创文章的博主,即可获得此勋章。
  • 原力探索 · S
    原力探索 · S
    在《原力计划【第二季】》打卡挑战活动中,发布 12 篇原创文章参与活动的博主,即可获得此勋章。(本次活动结束后统一统计发放)